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Abstract

Mutualism among species is ubiquitous in natural ecosystems but its evolution is not well understood. We provided a simple

lattice model to clarify the importance of spatial structure for the evolution of mutualism. We assumed reproductive rates of two

species are modified through interaction between species and examine conditions where mutualists of both species, that give some

benefit to the other species with their own cost, invade non-mutualists populations. When dispersal of offspring is unlimited, we

verified the evolution of mutualism is impossible under any condition. On the other hand, when the dispersal is limited to

neighboring lattice sites, mutualists can invade if the ratio of cost to benefit is low and the intrinsic reproductive rate is low in case

where the parameter values are symmetric between species. Under the same conditions, non-mutualists cannot invade mutualist

populations, that is, the latter are evolutionarily stable. In case of asymmetric parameters, mutualists tend to invade if the average

value of costs to two species is low or that of benefits is high, and if the intrinsic reproductive rate is low for one of the two species. A

mechanistic explanation of why mutualists increase when the dispersal is limited is given by showing that mutualist pairs of the two

species at the same lattice site rapidly increase at the initial phase of the invasion.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Species interact constantly in diverse ways in ecosys-
tems. In mutualistic interaction, one of the species
provides some kind of ‘‘service’’ that its partner species
cannot provide for itself and receives some kind of
‘‘reward’’ in return. The two mutualistic species survive
and reproduce by helping each other. Such mutualism
plays a fundamental role in all ecosystems (Boucher,
1985; Smith and Douglas, 1987; Bronstein, 1994).
Evolution of mutualism has been studied as one of the
most important problems in ecology (Doebeli and
Knowlton, 1998; Herre et al., 1999; Hoeksema and
Bruna, 2000; de Mazancourt et al., 2001; van Baalen
and Jansen, 2001).
One important factor to promote the evolution of

mutualism has been suggested to be vertical transmis-
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sion of symbionts through hosts, which assures a long
relationship between offspring of the interacting indivi-
duals of the two species over generations (Maynard-
Smith, 1991; Yamamura, 1993, 1996; Genkai-Kato and
Yamamura, 1999). If offspring of the symbiont interact
with offspring of the host, the symbiont could drive a
greater advantage by helping rather than exploiting their
hosts. Even without vertical transmission, the interac-
tion between individuals of two species will continue
over generations if dispersal of the two species is
spatially limited. Doebeli and Knowlton (1998) showed
the importance of spatial structure for mutualism to
evolve in their Iterated Prisoner’s Dilemma (IPD) game
model.
The IPD was proposed (Axelrod and Hamilton, 1981)

and had been analysed (Nowak and May, 1992;
Nakamaru et al., 1997; Wakano and Yamamura 2001)
as a theoretical method to investigate the phenomena of
cooperation in a single species, mainly by simulating
higher animals’ or human’s cognitive processes. Here, in
order to clarify the effect of spatial structure, per se, on
the evolution of mutualism between different species, we
apply a simpler spatial model of cost and benefit, used
for the analysis of the evolution of altruism (Matsuda,
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1987; Taylor, 1992; Wilson et al., 1992), without any
complex interaction between partners, as assumed in the
IPD game. It is a new challenge that we apply the
mutual altruistic behavior for interaction of different
species, although evolution of altruism within a single
species has intensively been studied (for recent studies,
see Irwin and Taylor, 2001; Le Galliard et al., 2003).
Our model includes several independent parameters:

benefit to one species from another species, cost to each
species, and intrinsic reproductive rates that are the
primary determinants of population densities of both
species. First, we show analytically that the evolution of
mutualism is impossible in this simple model when
dispersal is unlimited; that is, when there is no spatial
structure. Next, we investigate numerically the condi-
tions of parameter values under which mutualism can
evolve when dispersal is limited, where both symmetric
and asymmetric parameter values between species are
examined.
2. The model

We assume a two-dimensional lattice space where
species A and B inhabit; only one individual can occupy
one lattice site for each species. Individuals of different
species can coexist at the same lattice site and then
interact with each other. The individuals of two species
are divided into two classes each. AM and ANM are
frequencies of mutualists and non-mutualists of species
A, respectively. Similarly, BM and BNM are frequencies
of mutualists and non-mutualists of species B, respec-
tively. AE and BE are frequencies of empty sites for
species A and B, respectively. One can imagine a lattice
habitat populated by species A and another lattice
parallel to it, called as its ‘‘dual’’, which is inhabited by
species B. Doebeli and Knowlton (1998) proposed this
dual-lattice description, but did not assume empty sites
in their model. We have the following identities for the
two lattices:

AM þ ANM þ AE ¼ 1 ð1aÞ

and

BM þ BNM þ BE ¼ 1: ð1bÞ

In our model, mutualists of A and B species
reproduce by helping each other. A cost to a reference
species (measured in terms of the reduction of repro-
ductive rate) is always associated with the benefit it
provides to the partner species. Let rA; dA; bA and cA

denote intrinsic reproductive rate, death rate, benefit of
mutualism and cost of mutualism for species A,
respectively. Let rB; dB; bB and cB denote the corre-
sponding parameters for species B, respectively. We
assume, for simplicity, that the reproductive rates are
modified through species interaction, but that death
rates are not. When a lattice site is occupied by a
mutualist of species A and the corresponding site in the
‘‘dual’’ lattice also has a mutualist of species B, their
reproductive rates are rA þ bA � cA and rB þ bB � cB: If
the site in the dual site is occupied by a non-mutualist of
species B, their reproductive rates are rA � cA and rB þ
bB: Those for the contrary case are rA þ bA and rB � cB:
That is, a mutualist pays a cost without discrimination
whether the opponent is a mutualist or non-mutualist. If
a mutualist is associated with an empty site, the
reproductive rate of the mutualist is rA � cA for species
A and rB � cB for species B when mutualists pay costs
before assuring whether there is an opponent at the dual
lattice site or not (Case I). They are rA and rB when
mutualists do not pay any costs when the dual lattice site
is empty (Case II). The reproductive rates of non-
mutualists remain rA and rB when they are associated
with empty sites or non-mutualists of the other species.
The reproduction is successful only when offspring can
enter empty sites for each species.
3. Unlimited dispersal

When dispersal of reproduced offspring is unlimited
and they randomly reach any site, the changes in
frequencies of AM ; ANM ; BM and BNM for Case I can be
written as differential equations:

dAM

dt
¼ ðrA � cAÞAEAMðBE þ BNM Þ

þ ðrA � cA þ bAÞAEAMBM � dAAM ; ð2aÞ

dANM

dt
¼ rAAEANM ðBE þ BNM Þ

þ ðrA þ bAÞAEANMBM � dAANM ; ð2bÞ

dBM

dt
¼ ðrB � cBÞBEBM ðAE þ ANM Þ

þ ðrB � cB þ bBÞBEBMAM � dBBM ; ð2cÞ

dBNM

dt
¼ rBBEBNM ðAE þ ANM Þ

þ ðrB þ bBÞBEBNMAM � dBBNM : ð2dÞ

These equations are derived from the assumptions of
the model. For example, the first term of the right-hand
side of (2a) represents the condition that mutualists of
species A (the frequency is AM) reproduce rA � cA

offspring when they are associated with empty sites or
non-mutualists of species B (the frequency is BE þ BNM )
and the offspring survives only when they reach empty
sites (the frequency is AE). We omit the explanation of
the other terms and the other equations because they are
straightforward.
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From Eqs. (2a) and (2b), we have

1

AM

dAM

dt
�

1

ANM

dANM

dt
¼ � cAAEðBE þ BNM þ BM Þ

¼ � cAAEo� eo0; ð3Þ

where e is a positive value, because empty sites are
always produced due to the death of mutualists and
non-mutualists. That is, the specific increasing rate of
AM is always smaller than that of ANM : This equation
can be rewritten as

d

dt
log

AM

ANM

� �
o� e: ð4Þ

Integrating this in time interval from 0 to t; we have

AMðtÞ
ANM ðtÞ

o
AM ð0Þ

ANM ð0Þ
expð�etÞ: ð5Þ

As ANM ðtÞ is bounded under 1, AM ðtÞ must approach
zero as t goes to infinity. Similarly, since

1

BM

dBM

dt
�

1

BNM

dBNM

dt
¼ � cBBEðAE þ ANM þ AMÞ

¼ � cBBEo� eo0; ð6Þ

BM must approach zero. Therefore, mutualists cannot
increase for any parameter values under the conditions
of Case I.
The changes in the frequencies of AM ; ANM ; BM and

BNM for Case II can be written as the following
differential equations:

dAM

dt
¼ rAAEAMBE þ ðrA � cAÞAEAMBNM

þ ðrA � cA þ bAÞAEAMBM � dAAM ; ð7aÞ

dANM

dt
¼ rAAEANM ðBE þ BNM Þ

þ ðrA þ bAÞAEANMBM � dAANM ; ð7bÞ

dBM

dt
¼ rBBEBMAE þ ðrB � cBÞBEBMANM

þ ðrB � cB þ bBÞBEBMAM � dBBM ; ð7cÞ

dBNM

dt
¼ rBBEBNM ðAE þ ANM Þ

þ ðrB þ bBÞBEBNMAM � dBBNM : ð7dÞ

These equations are derived from the assumptions,
noting that mutualists do not pay costs when they are
associated with empty sites.
In this case,

1

AM

dAM

dt
�

1

ANM

dANM

dt
¼ �cAAEðBNM þ BMÞo0; ð8Þ
that is, the specific increasing rate of AM is always
smaller than that of ANM : By the same procedure as in
Case I, we can show that AM must approach zero.
Similarly, BM must approach zero.
We conclude that mutualists cannot survive under

existence of non-mutualists for any case when dispersal
is unlimited. It is reasonable that mutualists, which pay
some costs, are less advantageous than non-mutualists,
which pay no costs, if association between mutualists of
different species is random due to unlimited dispersal.
4. Computer simulation for limited dispersal

We now investigate the evolution of mutualism, i.e.,
invasibility of mutant mutualists against non-mutualists
in the lattice model by means of computer simulation.
The evolution of mutualism is more difficult for Case I,
where mutualists pay a cost even when the correspond-
ing site of species B is empty, than for Case II. Thus, we
examine Case I in order to clarify whether or not the
evolution of mutualism can be realized through spatial
effects. A lattice of size 25� 25 is modeled and the
periodic boundary conditions of a torus are applied. The
lattice is dual, composed of lattice A and lattice B. Each
lattice site can be in one of the three possible states:
empty, non-mutualist or mutualist.
First, the model parameters are assumed to be

symmetric between species, i.e., rA ¼ rB ¼ r; cA ¼ cB ¼ c;
bA ¼ bB ¼ b and dA ¼ dB ¼ d: In order to study the
invasion condition, the initial frequencies of mutualists of
both species are chosen with low frequencies. Our aim is to
see if mutualists can invade the population of non-
mutualists.
The following loop is repeated 625 times in one

generation; this number is the number of sites in the
lattice. (i) A lattice site X is chosen at random. (ii) If
there is an individual at site X on lattice A, the average
number of offspring b is calculated, depending on the
state of the corresponding site of lattice B. For example,
b ¼ r � c þ b when both the site X on lattice A and the
site X on lattice B are inhabited by mutualists (see Case I
in the model section). (iii) At each neighboring site on
lattice A (four neighbor assumption adopted), the
offspring is produced at probability b=4 when the site
is empty. (iv) The same reproductive process is repeated
around the site X on lattice B. (v) Individual at site X on
lattice A is killed at probability d. (vi) Individual at site
X on lattice B is killed at probability d.
In order to study invasibility, we put ‘‘wild-type’’

individuals on all sites on lattice A and B, and ran
simulations for 1000 generations to obtain the equili-
brium state. Then we introduced mutants by placing
mutant individuals at random sites on lattice A and B at
frequency 0.04 (25 individuals). After 1000 generations,
the average mutant frequencies on lattice A and B were
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calculated. The invasion was defined to be successful
when both of the average frequencies are higher than
0.04 (the initial frequencies). We also calculated
invasibility of non-mutualists in wild-type populations
of mutualists by the similar procedure.
In order to examine effects of the lattice size on the

invasibility of mutualists and non-mutualists, we prac-
ticed similar computer similation on 50� 50 and
100� 100 lattices.
Time series of the numbers of mutualist pairs on the

same site of lattice A and B, and neighboring mutualist
pairs on the same lattice were also calculated and
plotted in order to illustrate how mutualist mutants
increase their frequencies. Finally, we investigated
invasibility of mutualists in case of asymmetric para-
meter values between two species.
Fig. 1. Invasibility of mutants in the space of benefit ðbÞ and cost ðcÞ:
One run was conducted at each point of combination of b

ð0; 0:025; 0:05;y; 1:0Þ and c ð0; 0:0025; 0:005;y; 0:1Þ: A horizontal

bar means that mutualists invaded non-mutualist populations. A

vertical bar means that non-mutualists invaded mutualist populations.

We set death rate as d ¼ 0:25; and intrinsic reproductive rate as (a)
r ¼ 0:4 and (b) r ¼ 0:5: The region for successful invasion of mutualists
is smaller for higher reproductive rate.
5. Results of the simulation

Fig. 1 shows invasibility of mutualists in the
parameter space of cost (c) and benefit (b) in case of
symmetric parameter values between two species. Death
rate and intrinsic reproductive rate were fixed (d ¼ 0:25
and r ¼ 0:4 in Fig. 1a). Mutualist mutants could
successfully invade wild-type populations of non-mutu-
alists when c was low and b was high (represented by
horizontal segments ‘‘�’’). Generally, only mutualists
remained after 1000 generations when the invasion was
successful and only non-mutualists remained when
unsuccessful, although mutualists and non-mutualists
continued to coexist in some cases owing to stochastic
effects. The invasion of non-mutualists in wild-type
populations of mutualists was successful when c was
high and b was low (represented by vertical segments
‘‘|’’), while unsuccessful in the opposite case, implying
the mutualist population was evolutionarily stable. The
region occupied mainly by ‘‘�’’ signs and that by ‘|’
signs were almost separated by a straight line (nearly
c ¼ 0:13b in this case). The results near the boundary
line were not constant, due to stochasticity of the model,
especially depending on the initial spatial distribution of
mutants. Generally speaking, a necessary condition for
mutualists to invade or for non-mutualists not to invade
is that the ratio of cost of mutualists to benefit to the
individual of other species is lower than a constant
value. As the intrinsic reproductive rate is increased
(r ¼ 0:5 in Fig. 1b), the critical ratio of cost to benefit
becomes lower (nearly c ¼ 0:075b). In other words, the
evolution of mutualism becomes more difficult with
increasing reproductive rate.
Fig. 2 shows effects of the lattice size on the

invasibility of mutualists and non-mutualists. The
parameter values are the same as in Fig. 1a (d ¼ 0:25
and r ¼ 0:4), where the initial frequencies of mutants are
also the same (0.04). The critical boundaries of
successful mutualists invasion in cases of (a) 50� 50
lattice and (b) 100� 100 lattice were almost the same as
in the 25� 25 lattice, but the boundaries became clearer
as the lattice size increased. We could confirm the results
on the critical cost–benefit ratio are robust even in a
rather small lattice such as 25� 25: In Fig. 2b with less
stochasticity, we can see small region, at an upper part
of the boundary, where both mutualists and non-
mutualists invade and another small region, at lower
part, where neither mutualists nor non-mutualists
invades. Therefore, there may exist the region of
coexistence between mutualists and non-mutualists at
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Fig. 2. Effects of the lattice size on the invisibility of mutualists and

non-mutualists. The meaning of horizontal and vertical bars are the

same as in Fig. 1, and the parameter values are the same as in Fig. 1a

(d ¼ 0:25; r ¼ 0:4). As the lattice size increases ((a) 50� 50 and (b)
100� 100), the critical boundary for successful invasion of mutualists
becomes clearer.
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the former part, and the region of bistability at the latter
part. If so, such regions are small and most of the
parameter space will be filled with the two regions where
mutualists can invade and are stable, and where non-
mutualists can invade and are stable.
Fig. 3a shows an example of time series of the

numbers of mutualists on lattice A and lattice B, where
mutualist mutants invaded the populations dominated
by non-mutualists (r ¼ 0:4; b ¼ 0:7; c ¼ 0:01 and d ¼
0:25; see also Fig. 1a). The mutualists of the two species
seem to increase in an approximately corresponding
manner. Time series of the numbers of mutualist pairs
on the same site of lattice A and B and neighboring
mutualist pairs on the lattice A and B were also
calculated. Fig. 3b shows the ratios of the numbers to
their expected values if the mutualists were randomly
distributed on the two lattices. At the initial phase when
the numbers of mutualists were low, the relative
numbers of neighboring mutualist pairs took consider-
ably high values, implying the mutualists increased to
make clusters by reproducing in neighboring lattice
sites. The high value of the relative number of pairs
between different species during the same phase implies
that the mutualists could increase by pairing with each
other at a high probability. Fig. 3c shows an example of
time series of the numbers of non-mutualists on lattice A
and lattice B, where non-mutualist mutants invaded the
populations dominated by mutualists (r ¼ 0:5; b ¼ 0:2;
c ¼ 0:05 and d ¼ 0:25; see Fig. 1b). The non-mutualists
seem to increase independently. As shown in Fig. 3d,
during the initial phase when the numbers of non-
mutualists were low, the relative numbers of neighbor-
ing non-mutualist pairs also took high values, but not as
high as in case of the mutualists invasion, implying the
degree of clustering of non-mutualists was weaker. The
relative number of pairs between different species during
the same phase was remarkably low and became less
than one, implying that the non-mutualists of different
species kept away from each other. This may be because
non-mutualist mutants could increase by exploiting
mutualists of the other species.
Fig. 4 shows invasibility of mutualists in case of

asymmetric parameter values between two species where
the invasibility is represented as frequency isoclines of
invading cases among 100 trials. Although the isoclines
are unsteady due to highly stochastic nature of the
model, the following tendency is clearly recognized.
When reproductive rates of species A ðrAÞ and species
B ðrBÞ were different but cost and benefit were the same
(Fig. 4a), the invading probability was higher if the
reproductive rate of either species was higher, corre-
sponding to the result of symmetric parameter cases
(compare Fig. 1a and b, having different r values). An
interesting fact is that the isoclines tend to be convex
downwards, which implies that mutualism may evolve
even when the reproductive rate of only one species is
low. Fig. 4b shows the case of asymmetric costs between
species while reproductive rates and benefits are the
same. The invasion probability was higher if the cost of
either species was higher, corresponding to the result of
symmetric parameter cases (Fig. 1). The frequency
isoclines seem to be weakly convex, but close to a
straight line. Fig. 3c illustrates the case of asymmetric
benefits between species, while reproductive rates and
costs are the same. The frequency isoclines also seem to
be near a straight line. We can say that in the case of
asymmetric values of cost or benefit, the probability of
mutualism evolution is determined by the average value
between different species.
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Fig. 3. When mutualists invade populations of non-mutualists ðd ¼ 0:25; r ¼ 0:4; b ¼ 0:7; c ¼ 0:01Þ; (a) the numbers of mutualists in lattice A (thick
line) and in lattice B (thin line) increase rather correspondingly, and (b) the ratio of the number of pairs of neighboring mutants in lattice A to the

number expected from random distribution (thick line), the same index in lattice B (thin line) and the ratio of the number of pairs of mutants across

the lattices to the expected number (gray line) took high values during the initial phase. When non-mutualists invade populations of mutualists

ðd ¼ 0:25; r ¼ 0:5; b ¼ 0:2; c ¼ 0:05Þ; (c) the numbers of non-mutualists in lattice A (thick line) and in lattice B (thin line) increase independently, and
(d) the ratio of the number of pairs of neighboring mutants in lattice A to the expected number (thick line) and the same index in lattice B (solid line)

took high values but the ratio of the number of pairs of mutants across the lattices to the expected number (gray line) took low values during the

initial phase.
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6. Discussion

We provided a simple lattice model to clarify the
importance of spatial structure for the evolution of
mutualism. When dispersal of offspring is unlimited, we
verified analytically that the evolution of mutualism
evolution is impossible under any condition. On the
other hand, when the dispersal is limited to neighboring
lattice sites, mutualists can invade non-mutualists if the
ratio of cost to benefit is low and the intrinsic
reproductive rate is also low. Although our model is
very simple, these results do suggest that the evolution
of mutualism between species is more likely in organ-
isms that have low dispersal abilities.
We can regard the mechanism of mutualism evolution

in our model as mutual ‘‘altruism’’ between different
species. Altruism has been investigated as a behavior of
an individual that give benefit to another individual,
with its own cost, in the same species (Hamilton, 1964;
Yamamura and Higashi, 1992). Apparent altruism may
evolve when the ratio of cost to benefit is low and
genetic relatedness between the interacting individuals is
high. Yet even when individuals cannot discriminate
whether or not their opponents are relatives, altruism
can evolve if dispersal is limited, because there is a high
probability that the interacting individuals are relatives
to each other (Matsuda, 1987). In our model, the
interacting individuals are of different species and thus
are not clearly relatives. However, a mutualistic
individual which facilitates reproduction of a mutualis-
tic individual of the other species may nevertheless
obtain returns if the dispersal is limited for both species:
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Fig. 4. Invasibility of mutualists are represented as isoclines of probabilities of the successful invasion when parameters are asymmetric between

species. Parameters are set as r ¼ 0:5; d ¼ 0:25; b ¼ 0:7; c ¼ 0:03 unless they are not changed. (a) Intrinsic reproductive rates ðrA; rBÞ are changed
within (0.3, 0.3)�(0.7, 0.7) at 0.02 intervals. (b) Costs of mutualism ðcA; cBÞ are changed within (0, 0)�(0.1, 0.1) at 0.01 intervals. (c) Benefits of
mutualism ðbA; bBÞ are changed within (0, 0)�(1, 1) by at 0.1 intervals. At each data point, the invasion probability was calculated, based on 100
trials, from which the probability isoclines were interporated.
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offspring of the former individual is likely to be
helped by offspring of the latter individual. As shown
in Fig. 2b, the high values of the number of pairs of
mutualists during the initial phase of mutualists invasion
suggests that the mechanism stated above really can
operate. The high probability of mutualist pairs of
different species functions as the primary role for the
evolution of mutualism and the high probability of
neighboring mutualist pairs of the same species is the
result of the process, while the latter directly contributes
to the altruism evolution in a single species.
Mutualism in our model may evolve under the same

condition as in the evolution of altruism, where the ratio
of cost to benefit is low. This condition would be more
feasible in the evolution of mutualism because different
species require different resources for reproduction and
thus it is likely that a small cost for one species becomes
a large benefit for the other species (Yamamura, 1993).
Therefore, values of the critical cost–benefit ratio such
as 0.13 or 0.075 in Fig. 1 do not seem to be unrealistic.
Mutualism in our model may evolve more easily when

intrinsic reproductive rates are small (compare Fig. 1a
and b). This would be because equilibrium frequencies
of wild-type non-mutualists are low under the low
intrinsic reproductive rate and mutualists of different
species easily make clusters together using the high
frequencies of empty sites. A similar explanation was
given for the evolution of altruism when the equilibrium
frequency is low (Matsuda, 1987). On the other hand, in
a spatial model of the evolution of altruism without
empty sites, such evolution does not occur, because
competition for reproductive sites cancels out any
helping effect that may be conferred by neighboring
altruists (Taylor, 1992; Wilson et al., 1992).
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The evolution of mutualism does not hinge on the
equivalent costs and benefits between interacting species
because the average value of costs and that of benefits
tend to determine the probability of the evolution even if
the parameters are asymmetric (Fig. 3b and c). Regard-
ing the asymmetry of intrinsic reproductive rates, the
probability of the evolution is high when this parameter
is low for either one of the two species (Fig. 3a). We did
not examine the asymmetry of dispersal rates, with
relaxing the assumption of neighborhood dispersal.
However, in a special case of neighborhood dispersal
for one species and random dispersal for the other
species, we confirmed that mutualism could not evolve.
This would be because mutualist pairs between different
species are frequently lost by the random dispersal of
one species.
Our study in case of limited dispersal is based on

computer simulation. There are several analytical
methods to investigate spatial dynamics such as pair
approximation (Nakamaru et al., 1997; Le Galliard,
2003). The results that we obtained here may be
reinforced by applying such analytical methods, but
our computer simulation could clearly have shown the
importance of spatial structure in evolution of mutualism.
Spatial effects are generally very important in

dynamics and evolution of interacting species (Tilman
and Kareiva, 1997; Thompson, 1999). The present study
elaborates on this conclusion, and provides a robust
example of the importance of spatial structure in the
evolution of mutualism.
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